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Administrative coding data, compared
with CDC/NHSN criteria, are poor
indicators of health care-associated
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Background: 1CD-9-CM coding alone has been proposed as a method of surveillance for health care-associated infections (HAISs).
The accuracy of this method, however, relative to accepted infection control criteria is not known.

Methods: Retrospective analysis of patients at an academic medical center in 2005 who underwent surgical procedures or who
were at risk for catheter-associated bloodstream infections or ventilator-associated pneumonia was performed. Patients previously
identified with HAIs by Centers for Disease Control and Prevention’s National Healthcare Safety Network surveillance methods
were compared with those of the same risk group identified by secondary infection ICD-9-CM codes. Discordant cases identified
by only coding were all rereviewed and adjusted prior to final analysis. When coding and surveillance were both negative, a sample
of patients was used to estimate the proportion of false negatives in this group.

Results: The positive predictive values (PPVs) ranged from 0.14 to 0.51 with an aggregate of 0.23, even after adjustment for additional
cases detected on subsequent medical record review. The negative predictive values (NPVs) ranged from 0.91 to 1.00, with an aggre-
gate of 0.96. The estimates of the true variance of PPVs and NPVs across surgical procedures were small (0.0129, standard error, 0.009;
0.000145, standard error, 0.00019, respectively) and could be mostly explained by variation in prevalence of surgical site infections.
Conclusion: Administrative coding alone appears to be a poor tool to be used as an infection control surveillance method. Its
proposed use for routine HAI surveillance, public reporting of HAIs, interfacility comparisons, and nonpayment for performance

should be seriously questioned. (Am ] Infect Control 2008;36:155-64.)

Detection and measurement of the presence of
health care-associated infections (HAIs) through surveil-
lance is a key and essential component of established
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and effective health care infection control programs.'
From 1974 through 1983, the Centers for Disease Con-
trol and Prevention (CDC) carried out the seminal Study
on the Efficacy of Nosocomial Infection Control (SENIC),
which demonstrated, among other findings, that sur-
veillance is an essential element of infection control.?
The SENIC hospitals with the lowest HAI rates had
both strong surveillance and prevention control pro-
grams. Other studies have further demonstrated that
surveillance promotes reduction in HAIs.>® The most
widely accepted methodology for defining and monitor-
ing of HAIs was developed by the CDC through the Na-
tional Nosocomial Infection Surveillance (NNIS) (now
the National Healthcare Safety Network [NHSN]) sys-
tem).>” This standardized surveillance system using
uniform and widely accepted definitions and consistent
processes has been shown to be of great value for inter-
facility comparison by the CDC/NNIS system® ' and the
current CDC/NHSN system.'’ The CDC/NHSN system
methods for expression of infection rates and risk ad-
justment have become a national and international
standard for categorizing and benchmarking HAI rates.
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The development of HAls has been recognized as a
major patient safety issue'*'® prompting payors and
consumers to call for public reporting of HAIs by pro-
vider organizations. Public reporting of these data has
been requested as necessary for comparison of perfor-
mance by health care organizations and to promote
improvement and enhanced patient safety. Further-
more, many states have enacted or are considering leg-
islation mandating such reporting. The Society for
Healthcare Epidemiology of America (SHEA) and the
CDC Healthcare Infection Control Practices Advisory
Committee (HICPAC) have both published position
papers expressing concern over the methodology for
surveillance and data collection that public reporting
systems may employ.'> '

Determining infection rates from administrative
databases containing International Classification of Dis-
eases, Ninth Revision, Clinical Modification (ICD-9-CM)
codes has been proposed and promoted as one mech-
anism for case finding, data collection, and reporting.
These data are readily available and would allow the
application of standard definitions to be applied to ad-
ministrative data sets. It would appear that the use of
administrative data might provide an efficient mecha-
nism for tracking infections. Several studies, however,
have questioned the accuracy of these data for this pur-
pose.! 2% The CDC and its Healthcare Infection Control
Practices Advisory Committee (HICPAC) have recom-
mended that discharge diagnosis codes should not be
used as the sole source of infection data for public re-
porting.“’ Other agencies and organizations, however,
have advocated the use of such coding data for infec-
tion control surveillance purposes and for obtaining a
perspective on patient safety. For example, 1CD-9-CM
and Diagnosis Related Groups (DRG) codes have been
the foundation of the Patient Safety Indicators (PSD)
promoted by the Agency for Healthcare Research and
Quality.?® Specifically, PSI 7 targets selected infections
because of medical care using ICD-9-CM codes of 999.3
or 996.62 in any secondary diagnosis field. The consis-
tency of these PSI 7 codes for surveillance for catheter-
associated bloodstream infections has recently been
questioned.”®

Currently, over 30 states have some legislative activ-
ity related to the reporting of HAIs. Many states plan to
utilize reporting directly through the CDC/NHSN system
using CDC definitions or by the application of CDC/
NHSN methodology for reporting by individual facilities
directly to a state agency. Some states, howevert, are pro-

posing the use of administrative claims data as their re-

porting mechanism.*” More recently, the Center for
Medicare and Medicaid Services (CMS), through provi-
sions made by the Deficit Reduction Act of 2005 (Pub.
L. 109-171), has enacted a policy to withhold payment,
effective October 2008, for certain conditions acquired
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during hospitalization, including specific HAIs {cathe-
ter-associated urinary tract infection, vascular cathe-
ter-associated infection, and mediastinitis after
coronary artery bypass grafting).**? ICD-9-CM codes,
grouped as DRGs not present on admission, would be
the sole method used to identify these conditions.

Given the confidence being attributed to 1CD-9-CM
coding for detecting HAIs by these diverse systems of
reporting and surveillance, the current retrospective
study was designed to compare directly the accuracy
of HAIs identified by ICD-9-CM secondary infection
codes to those identified by traditional epidemiologic
methods as outlined by CDC/NHSN on a large group
of patients receiving care at a major academic medical
center during 2005.

METHODS

Study location and time period

The Ohio State University Medical Center (OSUMC)
is a 1145-bed tertiary care, multifacility complex in
Columbus, Ohio, consisting of several adjacent build-
ings on the main health care campus, providing highly
specialized patient care plus a community-based facil-
ity located 6 miles from the main health care complex.
There were 5 infection control professionals (ICPs) who
conducted infection control surveillance and imple-
mented control interventions for all of these facilities
during the study period.

OSUMC maintains a large array of clinical patient
data, categorized within data marts in its information
warehouse, facilitating ad hoc queries for the data
retrieval required for this study. This study was a retro-
spective review of infection control surveillance and
administratively coded data collected from January 1,
2005, to December 31, 2005 (calendar year 2005
[CY2005]), at OSUMC. This entire project was approved
and monitored by the Institutional Review Board of
The Ohio State University’s Office of Responsible
Research Practices.

Targeted HAI surveillance

In CY2005, infection control surveillance at OSUMC
consisted, in part, of monitoring for surgical site in-
fections (SSIs) for the following targeted surgeries: coro-
nary artery bypass grafting, peripheral vascular,
colorectal, head and neck, hysterectomy, laminectormy
and spinal fusion (combined as “spinal surgeries”),
craniotomy, ventricular shunt placement, and total
knee and hip replacements. Catheter-associated
bloodstream infections (CA-BSls) were monitored
during CY2005 in several units. Likewise, ventilator-
associated pneumonias (VAPs) were also monitored but

_in only 1 intensive care unit and for only a portion of

that year. All HAls were originally determined by routine
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Table 1. ICD-9 CM procedure codes for classifying patients at risk for infection

Procedure

ICD-9 procedure codes

CABG
Peripheral vascular

Colorectal

36.1, 36,10, 36.11, 36.12, 36.13, 36.14, 36.15, 36.16, 36.17, 36.19, 36.2

38, 38.02, 38.03, 38.04, 38.05, 38.06, 38.07, 38.08, 38.09, 38.10, 38.12, 38.13, 38.14, 38.15, 38.16, 38.18, 383,
38.32, 38.33, 38.34, 38.35, 38.36, 38.37, 38.38, 38.39, 38.40, 38.42, 38.43, 38.44, 38.45, 38.46, 38.47, 38.48,
38.49, 38.7, 38.8, 38.82, 38.83, 38.84, 38.85, 38.86, 38.87, 38.88, 38.89, 39.0, 39.01, 39.02, 39.03, 39.04,
39.05, 39.06, 39.07, 39.08, 39.09, 39.10, 39.11, 39.12, 39.13, 39.14, 39.15, 39.16, 39.17, 39.18, 39.19, 39.20,
39.21, 39.22, 39.23, 39.24, 39.25, 39.26, 39.28, 39.29, 39.50, 39.51, 39.52, 39.53, 39.54, 39.55, 39.56, 39.57,
39.58, 39.59, 39.7, 39.71, 39.72, 39.73, 39.74, 39.75, 39.76, 39.77, 39.78, 39.79

45, 45.0, 45.00, 45.03, 45.41, 45.49, 45.5, 45.52, 45.71, 45.72, 45.73, 45.74, 45.75, 45.76, 45.79, 45.8, 45.9,
45,92, 45.93, 45.94, 45.95, 46, 46.0, 46,03, 46.04, 46.1,46.1 1, 46.13, 46.14, 46,43, 46.52, 46,75, 46.76, 46.9 1,

46.92, 46.94, 48.5, 48.61, 48.62, 48.63, 48.64, 48.65, 48.66, 48.67, 48.68, 48.69

Head and neck
Hysterectomy
Spinal surgeries

30.1, 304, 40:4, 40.41, 40.42
68.31, 68.39, 68.4, 6851, 68.59, 68.6, 68.7
03.01, 03.02, 03.09, 80.5, 80.59, 80.51, 81.01, 81.02, 81.03, 81.04, 81.05, 81.06, 81.07, 81.08, 81.03, 81.31,

81.32, 81.33, 81.34, 81.35, 81.36, 81.37, 81.38, 81.39, 81.62, 81.63, 81.64, 84.51, 84.52

Craniotomy

01.2,01.21, 01.22, 01.23, 01.24, 01.25, 01.26, 01.27, 01.30, 01.31, 01.32, 01.39, 01.40, 01 41, 01.42, 01.50,

01.51,01.52, 01.53, 01.59, 02.91, 02.92, 07.5, 07.51, 07.52, 07.53, 07.54, 07.59, 07.6, 07.61, 07.62, 07.63,
07.64, 07.65, 07.68, 07.69, 07.7, 07.71, 07.72, 07.79, 38.01, 38.11, 38.31, 38.41, 38.51, 38.61, 38.81, 02.11,

02.12,02.13,02.14
Ventricular shunt
Knee and hip
Centrat venous catheter placement 38.93
Mechanical ventilation

02.2, 02.31, 02.32, 02.33, 02.34, 02.35, 02.39, 02.42, 02.43
81.51, 81.52, 81.53, 81.54, 81.55

31,1, 312, 31.29, 31.21, 96.04, 96.7, 96.70, 96.71, 96.72

standard surveillance in CY2005 to have met CDC/NHSN
criteria as established and in practice during 2005."

Determination of population at risk for targeted
infections

For each of the targeted SSIs, the exact population at
risk was recreated and determined by querying the in-
formation warehouse data marts using the ICD-9-CM
procedure codes outlined in Table 1. These procedure
codes exactly represented those used during CY2005
to conduct infection control surveillance and to calcu-
late denominator data to determine infection rates.
Thus, any patient on targeted units in which infection
control surveillance was being conducted in CY2005
and who had one of these procedures performed was
retrospectively identified. Based on the restrictions
placed on using prisoner data by the OSU Institutional
Review Board, all procedures performed on or devices
placed in prisoners were excluded from the denomin-
ator data for the entire study; likewise, infections iden-
tified in prisoners were also excluded from the
numerator data for this entire study.

The populations at risk for the development of CA-
BSIs were determined by identifying those patients
who had a central venous catheter placed (ICD-9 CM
code 38.93) (Table 1) plus a positive blocd culture ob-
tained after catheter placement. Patients at risk for the
development of VAP were identified by querying the in-
formation warehouse for patients who had any ICD-9
ventilator procedure codes (31.1, 31.2, 31.29, 31.21,
96.04, 96.7,96.70, 96.71,96.72) (Table 1) in the targeted

intensive care unit during the same time period when
infection control surveillance was conducted.

Targeted administrative coding for infections

To avoid investigator bias, ICD-9-CM discharge codes
previously selected by independent groups were
reviewed and subsequently utilized as the comparison
group for this study. Officials in the state of Pennsylva-
nia, through the Pennsylvania Health Care Cost Con-
tainment Council (PHC4), have been utilizing a large
group of codes as part of their public reporting for
HAIs (http:/fwww.phc4.org). In 2003, Pennsylvania leg-
islation implemented the mandatory reporting of HAIs.
In 2004, the PHC4 began the directive for all hospitals
to report, through billing record format of patient
discharges, hospital-wide CA-BSIs, catheter-associated
urinary tract infections, VAP, and SSls {cardiovascular,
neurosurgical, and orthopedic procedures).'”*® The
PHC4 defined more than 140 secondary ICD-9 CM in-
fection codes to identify HAls as outlined in Table 2.
After a review of ICD-9-CM codes utilized by states for
public reporting, the PHC4 codes were thought to rep-
resent the most comprehensive selection. Thus, these
sets of secondary infection codes for SSls, CA-BSIs,
and VAPs were directly employed to identify potential
cases of HAIs in this study by administrative coding.

Determination of patients with an infection as
identified by coding data

A query of the OSUMC information warehouse data-
bases was performed using all of the SSI administrative
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Table 2. ICD-9 CM discharge codes used as screening for infection*

Type of infection ICD-9 infection screening codes

Surgical site infections 994.2, 996.61, 996.62, 996.63, 996.66, 996.67, 996.71, 996.72, 998.0, 998.31, 998.32, 998.51, 998.59, 998.6, 999.83,
999.3, 320.81, 320.82, 320.89, 320.0, 320.1, 320.2, 320.3, 320.7, 320.9, 321.0, 321.1, 321.2, 321.3, 321 4, 321 .8,

322.0, 322.1, 322.2, 322.9, 324.0, 324.1, 324.9, 420.90, 420.91, 420.99, 421.9, 422.90, 422.91, 513.1, 519.2, 682.1,

682.2, 682.3, 682.4, 682.6, 682.7, 682.9, 728.0, 730.00, 730.01, 730.02, 730.03, 730.04, 730.05, 730.06, 730.07,
730.08, 730.09, 730.20, 730.21, 730.22, 730.23, 730.24, 730.25, 730.26, 730.27, 730.28, 730.29, 730.30, 730.31,
730.32, 730.33, 730.34, 730.35, 730.36, 730.37, 730.38, 730.39, 730,90, 730.91, 730,92, 730.93, 730.94, 730.95,
730.96, 730.97, 730.98, 730.99, 890.0, 890.1, 890.2, 891.0, 891.0, 891.1, 891.2, 894.0, 894.1, 894.2

Bloodstream infections

0.38.0, 038.10, 038.11, 038.19, 038.2, 038.3, 038.40, 038.41, 038.42, 038.43, 038.44, 038.49, 038.8, 038.9, 790.7,

995.90, 995.91, 995.92, 480.0, 480.1, 480.2, 480.3, 480.8, 480.9, 481, 482.0, 482.1, 482.2, 482.30, 482.31, 482.32,
482.39, 48240, 482.41, 482.82, 482.83, 482.84, 482.89, 482.9, 483.0, 483.1, 483.8, 485, 486, 487.0, 482.49, 482.81

Pneumonia

480.0480.3, 480.8, 480.9, 481, 482.0-482.2, 482.30-482.32, 480.39482.41, 482.82482.84, 482.89, 482.9, 483.0,

483.1, 483.8, 485, 486, 487.0, 482.49, 482.81

*Adapted from Pennsylvania Health Care cost Containment Council (PHCA4),
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Fig I. Schematic representation of infection case
classifications from both coding and traditional
surveillance methods for initial and adjusted
analyses. Identical sets of patients were queried for
infections using ICD-9-CM secondary infection
codes or CDC/NHSN criteria (traditional
surveillance). Discordant cases (count b) were
reviewed and, if found to meet CDC/NHSN criteria
(count b,), were reclassified. False negatives where
neither method identified a case (count d) were
determined by a review of random cases and
reclassified as true cases as illustrated. Using
traditional surveiliance as the reference standard,
the accuracy of coding data was determined from
the adjusted 2 X 2 table. See text for complete
details.

codes (Table 2) for the time period January 1, 2005, to
December 31, 2006, to include queries for up to 1 year
after certain surgical procedures were performed. This
query defined all patients coded with any of the
targeted administrative ICD-9-CM infection screening
codes during the study time period. Each specific group
of patients undergoing a targeted surgical procedure as
outlined above (Table 1) was matched against this group
of patients to determine which of those having the tar-
geted procedure had also been coded with any 1 or
more ICD-9-CM codes for a suspected infection from Ta-
ble 2 during the designated study time period. Patients
were matched only if they had the infection code added
after the date of the targeted surgery. Because of the

placement of an implant or artificial device, patients
with coronary artery bypass grafting, peripheral vascu-
lar, spine, craniotomy, ventricular shunt, and knee and
hip joint replacement surgeries were screened for the
presence of the screening infection ICD-9-CM codes
for up to 1 year after the procedure, consistent with
CDC/NHSN guidelines. Patients with colorectal, head
and neck, and hysterectomy procedures were queried
for only 30 days after the targeted procedure, consistent
with CDC/NHSN guidelines. Upon completion of this
step, all patients undergoing a targeted surgical proce-
dure in CY2005 who were also categorized as having
an infection based on ICD-9-CM coding from the PHC4
list of screening codes were thus identified.

Patients within the targeted units with the presence
of a central venous catheter plus a positive blood cul-
ture were matched with those having 1 or more ICD-
9-CM screening codes for bloodstream infection (Table
2). Patients within the targeted unit with a procedure
code related to mechanical ventilation were matched
with those having 1 or more ICD-9-CM screening codes
for pneumonia (Table 2).

Matching of patients identified with infection
from traditional surveillance to those identified
with an infection based on coding data

Utilizing a line list of all CY2005 patients previously
identified with a HAI based on CDC/NHSN definitions
and methodology (hereafter referred to as “traditional
surveillance™), cases were systematically matched
within their specific groups obtained from coding
data. This matching created groups of patients for
each surgical procedure type or targeted device infec-
tion: (1) cases in which both traditional surveillance
and coding data agreed that there was an infection
(count a, Fig 1), (2) cases in which coding data identi-
fied an infection and traditional surveillance did not
(count b, Fig 1), (3) cases in which traditional surveil-
lance identified an infection and coding did not (count
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¢, Fig 1), and (4) cases in which neither method identi-
fied an infection (count d, Fig 1). This step
encompassed our “initial” analysis of the comparison
of coding data to traditional surveillance.

Medical record review of discordant cases and
cases not detected by either surveillance
method

Discordant cases identified by ICD-9-CM coding but
not by traditional surveillance (count b, Fig 1) were
each individually reviewed by ICPs to determine the
presence of an infection based on CDC/NHSN defini-
tions and methods utilized in CY2005. For all cases,
this consisted of a review of all discordant cases except
potential CA-BSI cases. Furthermore, a random sample
of 40 cases (referred to as count m, Fig 1) from each
group in which neither method detected an infection
(count d, Fig 1) was reviewed to estimate the number
of cases that should have been included in count c.
This random sample represented approximately 10%
of total cases for each group.

All medical record reviews were completed indepen-
dently of any input or discussion of cases by the inves-
tigators or other members of the research team so as to
not introduce any bias in the final decision regarding
the presence or absence of an infection. The ICPs
were instructed to follow their standard procedures
for reviewing these cases and to identify as cases
only those that were in compliance with CDC/NHSN
definitions and methodology based on their usual prac-
tices. Upon completion of the medical record review,
any of the discordant cases found to be an infection
(count by and proportion d,/m, Fig 1) were reclassified
for the adjusted analysis as outlined in the Data and
Statistical Analysis section below. Because CA-BSI cases
were also randomly sampled, the cases were also con-
verted to a proportion for reclassification.

Data and statistical analysis: Estimates of
positive predictive values and negative
predictive values of the coded surveillance
method after verification of negatives through
subsampling

The rationale and strategy for final data analysis are
outlined. Two-by-two tables were completed in which
the coded data were crossed with traditional epide-
miologic surveillance (Fig 1). We assumed for the final
analysis that, if traditional surveillance determined the
presence of an infection, according to CDC/NHSN criteria,
then it was truly positive. We did not assume that tradi-
tional surveillance provides gold standard classification
without verifying negatives. Figure 1 refers to these as
counts a and ¢. When traditional surveillance was not pos-
itive (counts b and d), the number of false negatives was
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verified among these counts and added to counts a and
¢. Count b was small enough to determine completely
for all patients the number that was missed by traditional
surveillance, with the exception of CA-BSI cases from
which a random sample of 50 cases was obtained. We
refer to this number in the second table of Fig 1 as b;. As
one would expect across all procedures, there were
many patients who were negative on coding and nega-
tive on traditional surveillance (count d). From those pa-
tients, we took samples of 40 patients of the d, which we
refer to as m, and used them to estimate the proportion
of that cell that were false negatives (d;/m). Figure 1
shows how the initial stage table was adjusted to incor-
porate these corrections for false negatives. From the
data in the final adjusted 2 X 2 tables, the calculations
of positive predictive value (PPV) and negative predic-
tive value (NPV) with coding data classified as the
“test” compared to adjusted traditional surveillance as
the “‘reference standard” were calculated according to
standard epidemiologic methods.*®

Sampling from d to estimate the false-negative
proportion makes standard estimates of variance of
summary statistics like PPV and NPV inapplicable. We
developed a mode! in which we assumed that sampling
was fixed within each of the negative and positive cat-
egories of the electronic coding results, which is a stan-
dard assumption in such tables. In other words, we
assumed a+b fixed and ¢+d fixed. To account for the
subsampling within the negative cells, we assumed
the sample size was fixed to m for the coding negatives
and that d would always be larger than m (Li X, et al,
manuscriptin preparation). We obtained maximum like-
lihood estimates (MLE) of PPV and NPV and their
variances. For comparison purpose, we also provide
the variance estimates from the standard approach.
Note that we also allowed for sampling from count
b, even though it was not needed in this study except
for CA-BSI. Thus, the MLEs allow for subsampling for
verification from b as well as d.

To evaluate the variability of PPVs and NPVs across
all surgical procedures, we estimated the true variance
of these not explainable by sampling error, The true
PPVs could be all the same across procedures, and
they vary only because of sampling error, or they
vary systematically across procedures beyond what
can be explained by sampling error. The CA-BSIs and
VAPs wete not included in this systemic analysis be-
cause they could not be directly compared with the
surgical procedures or to each other because of the
unique nature of these device-related infections.

RESULTS

During CY2005, there were a total of 3882 surgical
procedures performed at OSUMC for which traditional
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Table 3. Measures of accuracy of coding data compared with traditional surveillance after adjustment

PPV SDL sSDS NPV SDL SDS Prevalences
Infection type
Surgical site infections
Coronary bypass grafting 0.42 0.067 0.067 0.96 0.025 0.009 0.08
Peripheral vascular surgery 0.35 ’ 0.050 0.050 0.97 0.009 0.009 0.09
Colorectal 0.51 0.058 0.058 0.95 0.025 0.01 0.1
Head and neck 0.19 0.069 0.069 0.99 0.008 0.008 0.03
Hysterectomy 0.46 0.096 0.094 0.98 0.008 0.008 0.05
Spinal surgeries 0.14 0.050 0.050 1.00 0.001 0.001 0.01
Craniotomy 0.22 0.080 0.080 1.00 0.005 0.005 0.03
Ventricular shunt 0.29 0.099 0.099 0.99 0.008 0.008 0.06
Knee and hip replacements 0.22 0.047 0.047 0.99 0.004 0.004 0.03
Others
Catheter-associated BSI 0.15 0.015 0.0(5 0.91 0.008 0.009 0.11
Ventilator-associated pneumonia 0.34 0.075 0.074 0.91 0.023 0.023 0.15
Totals 0.23 0.96

PPV, positive predicitive value; NPY, negative predicitive value; SDL, standard error for the estimated PPV/NPV from the model approach; SDS, standard error for the estimated PPV/

NPV from the traditional approach.

infection control surveillance was conducted using
standard CDC/NHSN methods. Additionally, there
were an estimated 1599 patients at risk for CA-BSIs
and 193 patients at risk for VAP in the units at OSUMC
in which traditional surveillance was conducted based
on the denominator definitions applied. Among the
surgical procedures, 457 (12 %) were initially identified
as having a SSI by coding data and 144 (4%) by tradi-
tional infection control surveillance methods. Among
patients with a central venous catheter placed and
with a positive blood culture, 569 (36 %) were initially
identified as having a CA-BSI by coding data and 150
(9%) by traditional infection control surveillance.
Among patients with the presence of mechanical
ventilation and intubation, 41 (21 %) were initially iden-
tified as having a VAP by coding data and 24 (12%) by
traditional infection control surveillance. All of these
data constituted the “initial” data for analysis of coding
accuracy (Fig 1).

Upon completion of the initial data collection, there
were 363 discordant cases (count b, Fig 1) among sur-
gical procedures for which subsequent medical record
review was performed. These were cases.that coding
identified as infections but were not identified by initial
infection control surveillance. Among these, 55 of 363
(15%) were subsequently found to meet CDC/NHSN
criteria for an infection but were missed by initial sur-
veillance (count by, Fig 1). There were 485 discordant
cases (count b, Fig 1) among potential CA-BSI cases,
and a random sample of 50 of these was reviewed.
Among these, none were found to have a CA-BSI as
determined by CDC/NHSN criteria (count b;, Fig 1).
There were 31 discordant cases among VAP cases
(count b, Fig 1), and these were all reviewed. There
were 4 (13 %) cases found to have a VAP according to
CDCI/NHSN definitions (count b,, Fig 1). Overall, there

were 879 discordant cases that were identified as infec-
tions by coding but not traditional infection control
surveillance. Combining the review of all surgical and
pneumonia cases and extrapolating the random sam-
ple of BSI cases to the total, only 59 of 879 (7 %) of these
cases were missed by initial surveillance and deter-
mined to have actually been infections based on
CDCINHSN definitions. These cases were reclassified
for the final adjusted analysis (@ + b;, b- b,, Fig 1).

There were 3375 surgical cases, 964 patients with
central venous catheter and positive blood cultures,
and 138 ventilated patients in whom neither surveil-
lance method identified an infection (count d, Fig 1).
To assess whether any cases were missed among these
patients, a random sample of 40 cases of each surgical
procedure and device category were reviewed. No addi-
tional infections were found in all groups with the
exception of 1 case each for coronary artery bypass
grafting and colorectal surgery patients and 1 case
among patients with central venous catheter and posi-
tive blood culture. For each of these categories, it was
estimated that 1 of 40 (2.5%) (d;/m, Fig 1) cases should
have been classified as infections by traditional infec-
tion control surveillance. These cases were adjusted
based on the total (¢ + d;/m X d, Fig 1) and were reclas-
sified for the final adjusted analysis.

The accuracy of coding data compared with tradi-
tional infection control surveillance, calculated as
PPV and NPV, based on these adjusted data are outlined
in Table 3. Generally, the PPVs are low and the NPVs are
very high and near 1.0 across all of the infections; PPVs
ranged from 0.14 to 0.51 and NPVs from 0.91 to 1.00.
The PPV was highest for colorectal surgeries and lowest
for spinal surgeries. Overall, the aggregate PPV of cod-
ing data was only 0.23 for all cases when compared

- with traditional infection control surveillance for
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accuracy, even after adjustment for cases that were ini-
tially missed by traditional surveillance as determined
by subsequent medical record review. The standard er-
ror estimates from the MLE approach (SDL, Table 3) and
the standard approach (SDS, Table 3) agreed well for
PPV given that all of these cases were all verified by
medical record review. However, there are marked dif-
ferences between the 2 standard error estimates (SDL
and SDS, Table 3) for NPV because of the verification
subsampling within this group (count d, Fig 1), which
adds sampling error to the estimate of NPV.

A comparison to determine statistical differences of
PPV and NPV across surgical procedures was con-
ducted. For PPV, the estimate of the true variance com-
ponent for the surgical procedure random effect was
0.0129 with a standard error of 0.009. Thus, there is
no strong evidence to suggest that the PPVs vary
systematically across types of surgical procedures. Var-
iation in the PPVs is a function of variation in infection
prevalence. The logit of a PPV breaks it up into the sum
of a logit of prevalence and the log of the likelihood ra-
tio (log [sensitivity/[1-specificity]). The variation in
PPVs can, therefore, be broken into that because of
prevalence and that because of accuracy independent
of prevalence. The estimate of the true variance of
the logit of PPV is totally explained by prevalence dif-
ferences across surgical procedures. For variation in
NPVs, we also failed to find clear evidence of true vari-
ance among surgical procedures. This is not surprising
because they are all between 0.95 and 1.00. The esti-
mate of the true variance of NPVs was 0.000145 with
a standard error of .00019. Applying the logit transfor-
mation, approximately two thirds of this small vari-
ance could be explained by variation in prevalence.

After the medical record review was complete, ICPs
indicated that a common reason that cases may have
been initially missed by standard surveillance but iden-
tified on subsequent medical record review was that
these additional cases were identified based on clinical
findings and not on culture results. If microbiology cul-
tures are a primary case finding method, then some of
these cases would have been missed. A positive micro-
biclogic culture is commonly used as an initial screen
for potential HAls, especially SSIs. Despite this case-
finding disparity, only a small number of discordant
cases rereviewed actually met the CDC/NHSN criteria
for true infection (59/879, 7%). This indicates that ini-
tial traditional surveillance generally performed well
by not missing a significant number of infection cases.

After medical record review, ICPs attempted to as-
certain reasons that cases were identified by coding
data but not confirmed by traditional infection control
surveillance methods, and these are outlined in Table 4.
These categories are not mutually exclusive, and more
than 1 reason may be present for some cases. In many
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Table 4. Specified reasons that coding misclassified
infections based on medical record review

No infection identified, n 132 (34%)

Infection identified but at a site different 123 (32%)
from the targeted site, n

Procedure performed at a different facility, n 11 (3%)

Community-acquired, not healthcare-associated 59 (15%)
infection, n

Other, n 77 (21%)

Note. n = 384,

cases (34 %), no infection was identified on subsequent
medical record review; in an equivalent number (32 %),
an infection was identified but at a site different from
the site of the targeted infection. In several cases
(15%), an infection was detected but was found to be
community acquired and not hospital acquired. In a
small number of cases (3%), an infection may have
been detected, but it was for a procedure performed
at another facility and would not have been attributed
to our facility based on standard infection control sur-
veillance practices. In a number of cases (21 %), other
varied reasons were cited by the ICPs reviewing the
cases. Based on CDC/NHSN methods, none of these rea-
sons, therefore, would have met criteria for classifica-
tion as an HAI at our facility.

DISCUSSION

This study was designed to provide the most direct
and equitable comparison between ICD-9-CM coding
data obtained from administrative databases and tradi-
tional infection control surveillance methods as prac-
ticed by most hospitals in the United States. The
identical set of patients for which infection control sur-
veillance had been previously conducted was used for
comparison. Patients identified by coding data, but not
CDCINHSN criteria, as having HAls were all reviewed
and reclassified if missed initially. Only a small number
of these discordant cases (59/879, 7%) were subse-
quently found to meet CDC/NHSN criteria, suggesting
that the case-finding methods outlined by the CDC/
NHSN are reasonably robust. Based on the summary
results from this study, classification of HAIs by ICD-
9-CM secondary infection codes, when compared
with classification of infections by standard infection
surveillance methods using CDC/NHSN definitions
and methods, is very imprecise with an aggregate
PPV of only 0.23. Thus, 3 out of 4 HAIs as detected by
coding data, on average, would not meet standard
CDC/NHSN definitions and criteria.

Given that coding data has been proposed as a sur-
veillance tool for future public reporting and nonpay-
ment, the PPV as a measure of the accuracy of coding
data appears to be the most critical measure and is
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the one employed in this study. The PPV varied by
surgical procedure (0.14 to 0.51), but additional analy-
sis confirmed that this variation across surgical proce-
dures was not significant. Rather than sampling all
intensive care unit patients with codes for bloodstream
infections, this broad group of patients was further nar-
rowed to those with central venous catheters and pos-
itive blood cultures. Despite these efforts to give coding
data the best opportunity for identification of HAIs, the
PPV value for CA-BSIs remained quite low at 0.15. Thus,
ICD-9-CM discharge codes for all HAIs consistently
overreported the number of infections in contrast to
CDC/NHSN criteria. The NPV of the ICD-9-CM codes
compared with traditional surveillance were high, sug-
gesting that ICD-9-CM codes could be considered for
screening of patient data sets as a case-finding method,
but, as recently outlined by a CDC and HICPAC state-
ment on the public reporting of HAIs,'® they should
not used as the sole method of surveillance. The utility
of coding data for screening of HAIs may be further
limited, however, because of the inherent time delay
in the availability of such data, often not until many
weeks to months after discharge.

An additional interesting feature of surveillance with
ICD-9-CM discharge codes was noted. The ICD-9-CM co-
des for SSIs were selected by the PHC4 to be specific for
cardiovascular, neurosurgical, and orthopedic SSIs. They
were, however, applied in our study agdainst a more
diverse group of surgical procedures. These codes, sur-
prisingly, had the highest PPV for procedures {colorectal,
hysterectomy) not previously included in the PHC4 re-
porting. Although the differences in PPV across surgical
procedures could be explained away by SSI prevalence,
1CD-9-CM coding may lack selectivity for surveillance of
specific infection types or targeted procedures.

Previous studies have suggested similar concerns
about the accuracy of discharge coding data for iden-
tifying and classifying HAls. For example, Moro and
Morsillo examined a large number of patients from a
regional database of postoperative infections.'” Infec-
tions were identified prospectively using CDC/NHSN
definitions, including discharge surveillance with tele-
phone interviews and mailings. These data were com-

~ pared with the ICD-9-CM discharge codes assigned to

these patients. The sensitivity of coding was 10%
when codes for a postoperative infection were used.
This only increased to 19% and 21%, respectively,
when broader sets of ICD-9-CM codes were applied.
Another study examined different combinations of
ICD-9-CM codes to identify patients with pneumonia.'®
A rigorous reference standard was developed to classify
patients with pneumonia based on symptoms, chest ra-
diographs, computerized decision support system, and
use of the term pneumonia in the admission or dis-
charge reports. The sensitivity of claims data ranged
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from 47.8% to 66.2% with PPVs of 72.6% to 80.8%.
Despite these higher PPVs, these authors still con-
cluded that their ICD-9-CM coding algorithms were im-
precise.18 Two previous studies examining hospitalized
patients with pneumonia showed similar results.”"**

Two recent studies from Pennsylvania hospitals de-
tail the experience with reporting infections based on
the PHC4 methodology using the same ICD-9-CM sec-
ondary infection codes employed in this study.'®*’
The first examined a 9-month time period in 2004 at
Children’s Hospital of Philadelphia.'® A retrospective
cross-sectional review of cases was performed compar-
ing hospital infection control surveillance data with
patients identified by ICD-9-CM codes specified by
the PHC4. A random saraple of discordant cases was re-
viewed. The sensitivity of cases found by administra-
tive data compared with infection control data was
61% with a PPV of 20%.

The second study was reported from the Penn State
Milton S. Hershey Medical Center at which one fourth
of CY2004 data was reviewed.”® Cases identified by
PHC4 ICD-9 codes were identified, and a sample of
these cases was reviewed by trained ICPs. On review,
only 15% of urinary tract infection, 15% of SSIs, and
16% of VAP cases met CDC/NHSN definitions. Thus,
approximately 85% of cases identified by PHC4 1CD-9
codes in this hospital as infections failed to meet stan-
dard CDC/NHSN definitions. These 2 studies from Penn-
sylvania support the conclusions from our present study.

Other investigators have examined a combination of
ICD-9-CM codes with other health care data to increase
their utility in the surveillance of HAIs. For example,
ICD-9-CM codes combined with antimicrobial use
data appear to be a more sensitive method for detecting
postoperative infections.”>?* Thus, there may be a role
of ICD-9-CM codes as a part of surveillance algorithms
combined with other data such as antimicrobial use
data, microbiologic data, vital signs, or other clinical
or laboratory data. The role of ICD-9-CM coding as an
adjunct to current infection control surveillance meth-
odology, however, is not yet fully determined.

There are some limitations to this study. All of the
data are abstracted from the experience of only 1 large
academic center. The surveillance practices of ICPs at
our medical center may not be representative of those
at other centers; however, the ICPs have all been
trained in recognized and accepted APIC courses and
have nearly 100 years of cumulative surveillance expe-
rience. Furthermore, OSUMC has participated in NNIS/
NHSN for many years, giving these ICPs extensive ex-
perience in surveillance with CDC/NHSN methodology.
All of these reasons make this limitation less likely to
be significant. Additionally, the coding practices of
medical record abstractors may be unigque to our cen-

‘ter, and coding accuracy may be different at other
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medical centers. Nonetheless, the comparison of our
results with other similar studies, especially those in
the Pennsylvania hospitals using the same ICD-9-CM
codes, would suggest otherwise. We examined the
complete sample of patients at risk for infection in
each category, reducing the chance for verification
bias. Verification bias would occur if all subjects in
the original population do not have an equal chance
of disease verification.’®?® Furthermore, the ICPs
were completely independent in their reviews without
any discussion of the specifics of the cases, reducing
the chance that classification bias could be introduced.

CDC/NHSN definitions and criteria were utilized as
the gold reference standard for testing the accuracy
of coding data. Critics of the CDC methodology are con-
cerned that the application of this system may system-
atically miss HAIs. A pilot study published in 1998
examined the accuracy of the CDC/NNIS methodol-
ogy.”” It was conducted in 2 phases to review the charts
of selected intensive care unit patients who had HAIs
reported to the NNIS System. In phase 1, retrospec-
tively detected infections that matched the previously
reported infections were deemed to be true infections.
In phase 1I, 2 CDC epidemiologists reexamined a sam-
ple of charts for which a discrepancy existed. Each
sampled infection either was confirmed or disallowed
by the epidemiologists. The PPV for reported blood-
stream infections, pneumonia, SSI, urinary tract infec-
tion, and other sites was 87%, 89%, 72%, 92%, and
80%, respectively; the sensitivity was 85%, 68%,
67%, 59%, and 30%, respectively; and the specificity
was 98.5%, 97.8%,97.7%, 98.7%, and 98.6 %, respec-
tively. The authors concluded that, when NNIS hospi-
tals in the study reported a HAI, the infection most
likely was a true infection and that they infrequently
reported conditions that were not infections.

This study has significant implications for public
reporting and the nonpayment for performance. Based
on our results, coding data will overreport HAIs, on ag-
gregate, by 3-to 4-fold. This concern is illustrated by re-
ports from the PHC4 that have compared HAIs reported
directly by Pennsylvania hospitals to those detected by
coding data. Examination of data for 2004 indicated
11,668 HAls identified by traditional surveillance
methods compared with 115,000 HAIs documented
from coding data.’® Analysis of coded billing data re-
vealed 10- to 20-fold more HAI episodes than were re-
corded during surveillance. Much of this discrepancy
could be explained by the reasons identified by our
ICPs as detailed in Table 4: infections identified but at
a site different from the targeted site for coding, the
procedure was performed at a different facility than
the one reporting, or the infection was acquired in
the community (Table 4). In many cases, no infection
was actually identified. This is likely explained by
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different methods and criteria applied by coders where
data documented by the physician are only utilized. A
previous assessment of the PHC4 analysis indepen-
dently identified many of these same explanations
for the difference in outcomes between coding and tra-
ditional surveillance data.””

If HAI rates calculated from ICD-9-CM codes over-
report cases by as much as 75%, then reductions noted
in coding rates attributed to performance improvement
interventions may merely be due to variations in
coding and not represent any true reduction in infec-
tion rates. A recent systematic review suggested that
public reporting is ineffective to improve health care
performance.*® Thus, inaccuracies in rates for the
sake of public reporting may not significantly impact
consumer choice or hospital performance. In the con-
text of nonpayment for performance, however, these
discrepancies can have significant implications. Based
on our data, 3 of 4 cases may have payment withheld
or reduced erroneously by Medicare. Additionally,
cost data calculated using ICD-9-CM codes, and not
CDC/NHSN criteria, may significantly inflate the eco-
nomic impact of HAIs both in estimated expenses
and projected cost savings from interventions. This
study emphasizes the need for an accurate measure
of HAI rates to assess accurately their true impact
within the health care system.

In summary, this comprehensive study examined
the ability of a large group of ICD-9-CM discharge codes
to identify correctly the infections occurring after 9 dif-
ferent types of surgical procedures and for 2 common
HAIs (CA-BSI and VAP). The PPVs were very low in all
cases, suggesting that ICD-9-CM codes performed
poorly and were imprecise. Thus, administrative cod-
ing alone appears to be a poor tool for widespread
use as a surveillance method, especially for interfacil-
ity comparisons, public reporting, and nonpayment
for performance. Accurate measures of HAls are
needed for these purposes.
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